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Abstract

In this paper, we propose a new supervision objective

named uniform loss to learn deep equidistributed represen-

tations for face recognition. Most existing methods aim to

learn discriminative face features, encouraging large inter-

class distances and small intra-class variations. However,

they ignore the distribution of faces in the holistic feature

space, which may lead to severe locality and unbalance.

With the prior that faces lie on a hypersphere manifold,

we impose an equidistributed constraint by uniformly

spreading the class centers on the manifold, so that the

minimum distance between class centers can be maximized

through complete exploitation of the feature space. To

this end, we consider the class centers as like charges on

the surface of hypersphere with inter-class repulsion, and

minimize the total electric potential energy as the uniform

loss. Extensive experimental results on the MegaFace

Challenge I, IARPA Janus Benchmark A (IJB-A), Youtube

Faces (YTF) and Labeled Faces in the Wild (LFW) datasets

show the effectiveness of the proposed uniform loss.

1. Introduction

Face recognition has attracted much attention over the

past three decades, and a variety of face recognition meth-

ods have been proposed in the literature [2, 1, 20, 25, 10, 9].

In general, there are four main procedures in a practical

face recognition system: face detection, face alignmen-

t, face representation and face matching. As faces in the

wild condition usually suffer from large variations which

reduce inter-class separability and intra-class compactness,

face representation plays a key role by extracting discrimi-

native features to separate faces from different persons [25].

With the fast development of deep learning, recen-

t years have witnessed significant improvement of con-
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volutional neural networks (CNNs) based face representa-

tion [37, 34, 33, 35, 32, 30, 42, 24, 45, 23, 46, 41]. There

are three key attributes that determine the discriminative

power of the learned CNN features: training data, net-

work architecture and loss function. The amount of em-

ployed data largely affects the training procedure of CNNs,

where large-scale face datasets have been presented in re-

cent years such as VGGFace [30], VGGFace2 [3], MS-

Celeb-1M [11], IJB-A [18] and MegaFace [17, 28]. More-

over, data-augmentation methods have been developed to

improve the performance and avoid overfitting [27]. Deeply

learned features also benefit from the development of net-

work architectures, where representative CNN models in-

clude AlexNet [19], VGG [30] and GoogLeNet [36]. Fac-

ing the tremendous increase in the amount and complexity

of training data, deeper structures such as ResNet [13] and

DenseNet [14] have been designed to strengthen the learn-

ing ability. The last attribute is to design highly efficient

loss function, which provides effective gradients for learn-

ing discriminative CNN features [12, 34, 33, 32, 42, 24, 8,

45, 23, 7]. In this paper, we mainly focus on the third aspect

of how to design a more effective loss function.

Softmax loss is widely used in training CNN fea-

tures [37, 34], which is defined as a combination of the

last fully connected layer, a softmax function and a cross-

entropy loss [24]. However, we only learn separable fea-

tures through softmax loss with limited discriminative pow-

er. To address the limitation, various supervision objec-

tives have been proposed to enhance the discriminative-

ness of the learned features, such as contrastive loss [33],

triplet loss [32], center loss [42], large-margin softmax (L-

Softmax) loss [24] and range loss [45]. While most exist-

ing loss functions impose constraints of Euclidean margin,

SphereFace [23] shows the effectiveness of angular margin

by mapping faces on a hypersphere manifold with angular

softmax (A-Softmax) loss. However, all these methods aim

to enhance the discriminative power of the learned features,
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(a) SphereFace-2D (b) UniformFace-2D (c) SphereFace-3D (d) UniformFace-3D

Figure 1. Comparison of SphereFace and UniformFace on the LFW dataset, where points in different colors represent the learned deep

features from varying classes, and the numbers on the figure are located at the class centers. We apply LeNet-5 by modifying the dimention

of the last hidden layer into 2 and 3, respectively, so that we can directly visualize the learned deep features on the 2D and 3D hypersphere

manifold. In the toy examples, we only employ three identities from the LFW dataset for clear illustration. While both SphereFace and

UniformFace achieve high accuracy on 2D and 3D situations, we observe that the class centers of UniformFace are more equidistributed

than SphereFace for complete exploitation of the holistic feature space. (Best viewed in color.)

which fail to consider the distribution of faces in the holistic

feature space and may suffer from high locality and unbal-

ance.

In this paper, we argue that the distribution of the fea-

tures should be considered as an essential property. On one

hand, the learned features may be located very locally on the

manifold, which fail to fully exploit the feature space. On

the other hand, the minimum average inter-class distance

for each class, i.e., the distance between one class and its

nearest neighbouring class, may have large variance due to

the unbalanced distribution, where some classes especial-

ly face the risk of being misclassified. Fig. 1 (a) and (c)

show the visualization results of SphereFace on the LFW

dataset [15], where the class centers are nonuniformly dis-

tributed. Even though faces could be multi-modal, highly

non-uniform distribution (e.g. varying identities from the

same modality are gathered together) still leads to less dis-

criminativeness as the large gap between different modal-

ities is a “waste” of feature space. To this end, we pro-

pose a new objective function named uniform loss to learn

equidistributed representations for face recognition, which

is an ideal goal to fully exploit the feature space. Motivated

by the fact that the electric potential energy of like charges

on the surface of a sphere is minimized when they are u-

niformly distributed, we consider the class centers as like

charges with repulsion and formulate the objective of poten-

tial energy minimization as the uniform loss. Through the

joint supervision of A-Softmax loss and uniform loss, the

class centers of the learned features are uniformly spread

on the hypersphere manifold, so that the minimum average

inter-class distance is maximized with uniform distribution,

and we term the learned features as UniformFace. We ob-

serve that the classes are more equidistributed on the hy-

persphere manifold in Fig. 1 (b) and (d) with the additional

supervision signal of uniform loss. Experimental results on

the MegaFace Challenge I [17], IJB-A [18], YTF [43] and

LFW [15] datasets validate that the proposed uniform loss

effectively boosts the performance of face recognition.

2. Related Work

Face recognition is a long-standing computer vision

problem, where the methods can be mainly divided into

two categories: hand-crafted representation and learning-

based representation. Hand-crafted methods require strong

prior knowledge for the researchers to engineer the fea-

ture extractors by hand. For example, Gabor wavelets [21]

and LBP [1] firstly computed the textural information or

gradient in local regions, and then generated holistic fea-

tures for face representation. While hand-crafted methods

are heuristic and data-independent, learning based method-

s learn face representations in a data-driven manner. For

example, Cao et al. [4] presented a learning-based descrip-

tor (LE) by learning an encoder in an unsupervised manner.

Lei et al. [20] learned a LBP-like feature named discrimi-

nant face descriptor (DFD) with the LDA criterion. Duan et

al. [10] proposed a context-aware local binary feature learn-

ing (CA-LBFL) method to obtain bitwise interacted binary

codes for face recognition.

In recent years, deep face representation learning meth-

ods have achieved a series of breakthrough [37, 34, 33, 35,

32, 30, 42, 24, 45, 23, 46, 41]. Pioneering works include

DeepFace [37] and DeepID [34], which employed softmax

loss for training deeply learned features. Parkhi et al. [30]

proposed a “very deep” VGG network and created a rea-

sonably large face dataset. While softmax loss only guaran-

tees the separability of the features, several new supervision

objectives have been proposed to enhance the discrimina-

tive power [33, 32, 42, 24, 8, 23, 7]. For example, Sun et

al. [33] proposed a joint identification-verification signal.

Schroff et al. [32] demonstrated the effectiveness of triplet

loss. Wen et al. [42] presented a center loss to improve

the intra-class compactness. Zhang et al. [45] proposed a

range loss to address the long-tailed distribution of train-
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ing data. Liu et al. [24] enlarged the angular separability of

features through a large-margin softmax (L-Softmax) loss.

They also proposed an angular softmax (A-Softmax) loss

by constraining the learned features on a hypersphere mani-

fold [23]. However, these loss functions aim to enhance the

discriminative power of the learned features, ignoring the

distribution of features on the holistic feature space, which

may lead to high locality and unbalance in feature distribu-

tion.

3. Proposed Approach

In this section, we first revisit the A-Softmax loss [23]

which maps faces on a hypersphere manifold. Then, we

detail the proposed uniform loss and introduce the deep

equidistributed representation UniformFace. Lastly, we

highlight the differences between the uniform loss and two

relevant objectives, and demonstrate the necessity of simul-

taneous supervision.

3.1. Revisiting the ASoftmax Loss

The softmax loss has been widely applied in various vi-

sual recognition tasks, and its formulation is represented as

follows:

Ls = − 1

N

N∑
i=1

log
e
W

T
yi

xi+byi∑M

j=1 e
WT

j
xi+bj

. (1)

In (1), Wj ∈ R
d is the weights in the last fully con-

nected layer of the jth class and d is the feature dimension.

bj ∈ R is the bias term which is omitted for the sake of con-

cision below. xi ∈ R
d is the learned deep feature of sample

i, and yi is the ground truth class label. N and M are the

number of samples and classes, respectively. The features

learned by softmax loss have an intrinsic angular distribu-

tion, which suggests the cosine distance as the metric rather

than the Euclidean distance [23]. To this end, a modified

softmax loss is formulated as follows by constraining ‖Wi‖
to 1:

Lm = − 1

N

N∑
i=1

log
e‖xi‖ cos(θyi,i)∑M

j=1 e
‖xi‖ cos(θj,i)

, (2)

where the decision boundaries depend on angles. Given

a query point, we compare the angles with the weights of

each class and choose the minimum one as the result, so

that the features are evaluated on a hypersphere manifold.

SphereFace [23] manipulates decision boundaries to pro-

duce angular margin through an A-Softmax loss, where the

angle between the sample point and the target class is mul-

tiplied by the margin parameter m:

La−s = − 1

N

N∑
i=1

log
e‖xi‖ψ(θyi,i)

e‖xi‖ψ(θyi,i) +
∑
j 6=yi

e‖xi‖ cos(θj,i)
. (3)

Figure 2. An illustration of learning uniformly distributed repre-

sentations on the hypersphere manifold through potential ener-

gy minimization, where different colors represent varying classes.

We define the repulsion F between classes which is inversely pro-

portional to the square of the distance. In the figure, the linewidth

represents the magnitude of the repulsion. Through the minimiza-

tion of potential energy, the distribution of classes becomes uni-

form, and the maximum repulsion for each class obtained from the

nearest neighbouring class is equal and minimized. The situation

of 2D hypersphere manifold is shown for easy illustration.

In (3), ψ(θyi,i) is defined as (−1)k cos(mθyi,i) − 2k,

θyi,i ∈ [kπ
m
,
(k+1)π
m

], k ∈ [0,m− 1] instead of cos(mθyi,i)
to address the limitation that θyi,i is restricted in [0, π

m
].

While the A-Softmax loss aims to enlarge the angular dis-

tance between classes and constrain the features from the

same class to a smaller hypersphere area, it fails to consider

the distribution of features in the holistic hypersphere man-

ifold. As shown in Fig. 1, A-Softmax fails to completely

exploit the holistic feature space, which leads to unbalanced

distribution.

3.2. UniformFace

As the faces from different classes should be separat-

ed, we consider the class centers as like charges with equal

quantity, where each center repels the others. In order to

learn uniformly distributed class centers on the hypersphere

manifold, we define the uniform loss as the potential energy

of all the centers, and the class centers will be equidistribut-

ed through potential energy minimization. Fig. 2 shows

an illustration of the proposed uniform loss. Motivated by

Coulomb’s law, we set the repulsion between two class cen-

ters cj1 and cj2 inversely proportional to the square of the

distance:

F = λ
1

d(cj1 , cj2)
2
, (4)

where d(cj1 , cj2) is the distance between the centers cj1

and cj2 . In this paper, we obey the conventional Coulomb’s

law by using the Euclidean distance rather than the angular

distance. Moreover, we add one for each distance to prevent

from too large repulsion, i.e., d(cj1 , cj2) = ||cj1−cj2 ||2+1.

With the definition of (4), we obtain the potential energy
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Algorithm 1: UniformFace

Input: Training set {xi}, training labels {yi}, number of

classes M , Parameters Θ of CNN, hyperparameter λ,

and iteration numbers T .

Output: The parameters Θ.

1: Initialize Θ and the class centers cj .

2: for iter = 1, 2, · · · , T do

3: Sample a mini-batch from the training set.

4: for j = 1, 2, · · · ,M do

5: Update the class centers cj with (7).

6: end for

7: Update the parameters Θ with (8).

8: end for

9: return Θ.

of the center cj1 affected by cj2 :

E =

∫ ∞

d(cj1
,cj2

)

λ
1

x2
dx = λ

1

d(cj1 , cj2)
, (5)

where the potential energy of cj2 is the same as cj1 . In

order to learn equidistributed representations, we minimize

the total potential energy of all the class centers as our u-

niform loss. As potential energy is scalar quantity, we for-

mulate the uniform loss with the average of all the pairwise

energies, which is represented as follows:

Lu =
λ

M(M − 1)

M∑
j1=1

∑
j2 6=j1

1

d(cj1 , cj2)
. (6)

As the class centers cj are continuously changing during

the training procedure, we require to utilize the entire train-

ing set to update cj in each iteration, which is not applica-

ble in practice. Therefore, we employ a modified method

by updating the centers on each mini-batch [42]:

∆cj =

∑n

i=1 δ(yi = j) · (cj − xi)

1 +
∑n

i=1 δ(yi = j)
, (7)

where n is the number of samples in a mini-batch, δ(·) = 1
if the condition is true and δ(·) = 0 otherwise.

We employ the simultaneous supervision of A-Softmax

loss and uniform loss to learn discriminative and equidis-

tributed features as follows:

L = La−s + Lu, (8)

where the parameter λ in Lu balance the weights of differ-

ent terms, and SphereFace can be seen as a special case for

λ = 0. We optimize the CNN by standard SGD. Algorith-

m 1 details the proposed UniformFace.

3.3. Discussion

In this subsection, we first compare the proposed unifor-

m loss with two relevant supervision objectives: A-Softmax

loss and center loss, and then discuss the necessity of simul-

taneous supervision.

Comparison with A-Softmax Loss and Center Loss:

In recent years, several supervision signals have been pro-

posed to learn more discriminative deep face representation,

where the most relevant objectives are A-Softmax loss [23]

and center loss [42]. A-Softmax aims to learn discrimina-

tive features on the hypersphere manifold. However, it fails

to explicitly constrain the distribution on the holistic fea-

ture space, where the faces may be located locally and un-

balanced. Center loss simply minimizes the distances be-

tween the intra-class faces and the corresponding class cen-

ter, ignoring the inter-class relationships of class centers.

The proposed uniform loss considers the inter-class repul-

sion and encourages equidistributed class centers on the hy-

persphere manifold, so that the feature space is completely

exploited and the minimum distance between class centers

can be maximized.

Necessity of Simultaneous Supervision: In Uniform-

Face, we simultaneously employ the A-Softmax loss and

uniform loss as the training objective. On one hand, if we

only supervise CNN by A-Softmax loss, the faces will suf-

fer from nonuniform distribution on the hypersphere man-

ifold. On the other hand, if we simply utilize the uniform

loss, the intra-class variations will be unconstrained only

to guarantee the uniform distribution of the class centers.

Therefore, it is of significant necessity to employ simultane-

ous supervision for discriminative and equidistributed deep

representations.

4. Experiments

In this section, we conducted extensive experiments on

four widely-used face recognition datasets to demonstrate

the effectiveness of the proposed UniformFace, which in-

cluded the MegaFace Challenge I [17], IJB-A [18], YT-

F [43] and LFW [15] datasets.

4.1. Implementation Details

Detailed Setup of CNN: We utilized MXNet pack-

age [6] through the experiments and employed ResNet [13]

as the CNN architecture for all the datasets. Fig. 3 detailed

the employed architecture of the CNN. Throughout the ex-

periments, we set m to 4 for La−s as suggested in [23].

We fixed the parameter λ as 1 through cross-validation on

the YTF and LFW datasets. The model was trained under

the batchsize of 128 on four GTX 1080Ti GPUs for accel-

eration. We initialized the learning rate as 0.1, which was

divided by 10 at the 16K, 24K iterations.

Preprocessing: We performed standard preprocessing
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Figure 3. The CNN architecture adopted in UniformFace. The parameters of CNN are supervised by a joint signal of A-Softmax loss and

uniform loss. The dimension of the fully connected layer is 512. (Best viewed in color.)

on faces. We detected and aligned each face from training

sets and test sets with MTCNN [44] through five landmarks

(two eyes, two mouth corners and nose), and cropped the

image into 112 × 112. We also normalized each pixel in

RGB images by subtracting 127.5 and then dividing by 128.

Training: We trained our model on the refined MS-

Celeb-1M [11] and VGGFace2 [3] datasets. MS-Celeb-1M

originally contained about 10M images from 100K identi-

ties. We removed the images which were far away from

the class centers to improve the quality of the training data

and cleared the identities with less than 3 images to relieve

the long-tail distribution [8, 7]. The refined MS-Celeb-1M

dataset contained 85K identities with 3.84M images. VG-

GFace2 consisted of 9,131 subjects with 3.31 million im-

ages. We employed the training split to optimize our Uni-

formFace, containing 8,631 classes with 2.21M faces.

Testing: We extracted UniformFace from the output of

the fully connected layer, and we concatenated the features

of original faces and horizontally flipped faces as the final

representation. Therefore, the dimension of the final rep-

resentation is 1,024 for each face. We employ the nearest

neighbour classifier with cosine distance for face identifica-

tion and verification.

4.2. Datasets

We conducted experiments on four widely-used face

recognition benchmark datasets, where we followed the s-

tandard evaluation protocols to evaluate the effectiveness of

UniformFace.

The MegaFace Dataset: MegaFace [17] is a challeng-

ing benchmark dataset, which is designed to evaluate the

performance of face recognition algorithms at the million

scale. The MegaFace dataset consists of a gallery set and a

probe set. The gallery set is a subset of Flickr photos from

Yahoo, which consists of more than 1 million pictures from

690K individuals. The probe dataset contains two existing

datasets: FaceScrub [29] and FGNet. FaceScrub is a pub-

licly available dataset with 100K photos from 530 unique

individuals, where 55,742 images are male and 52,076 im-

ages are female. FGNet is a face aging dataset containing

1,002 images of 82 identities. Each identity has multiple

facial images at a wide range of ages (from 1 to 69).

The IJB-A Dataset: IJB-A [18] is an increasingly con-

cerned public dataset which offers challenges to the field

of face detection and face recognition by unconstrained im-

age settings. The IJB-A dataset contains 5,397 images and

20,412 video frames split from 2,042 videos of 500 individ-

uals with extreme pose, illumination and expression condi-

tions. We employ 10 folders with different random collec-

tion of 333 subjects for training and 167 for testing. Face

verification (1:1) and identification (1:N) are both evalua-

tion protocols for IJB-A challenge. The verification proto-

col consists of about 1,756 positive pairs and 9,992 negative

pairs in each folder, and the identification protocol contain-

s 112 gallery templates and around 1,763 probe templates,

where 55 randomly selected subjects are removed from the

gallery for difficulty. Face verification tests true accept-

ed rates (TAR) under varying false accepted rates (FAR).

Face identification performance is measured by a Cumula-

tive Match Characteristics (CMC) curve, which infers the

identification rate within the top-K retrieval candidates.

The YTF Dataset: YTF [43] contains 3,425 videos of

1,595 different persons downloaded from YouTube, with

varying variations of pose, illumination and expression,

which is a popular dataset for unconstrained face recogni-

tion. In YTF, there are about 2.15 videos available for each

person and a video clip has 181.3 frames on average.

The LFW Dataset: LFW [15] is a famous web-

collected image dataset for face recognition, which contains

13,233 images from 5,749 different identities. The images

are captured from the web in wild conditions, varying in

pose, illumination, expression, age and background, lead-
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Table 1. Rank-1 identification accuracy (%) with 1M distractors

and verification TAR at 10−6 FAR (%) on the MegaFace dataset.

Method Protocol @Rank-1 @FAR=10−6

YouTu Lab Large 83.29 91.34

NTechLAB-facenx Large 73.30 85.08

Vocord-DeepVo3 Large 91.76 94.96

DeepSense V2 Large 81.30 95.99

Shanghai Tech Large 74.05 86.37

Google-FaceNet Large 70.50 86.47

Beijing FaceAll-N Large 64.80 67.12

Beijing FaceAll Large 63.98 63.96

CosFace [41] Large 82.72 96.65

GRCCV Small 77.68 74.89

DeepSense Small 70.98 82.85

SIAT - MMLAB Small 65.23 76.72

Center Loss [42] Small 65.23 76.52

L-Softmax [24] Small 67.13 80.42

SphereFace [23] Small 72.73 85.56

CosFace [41] Small 77.11 89.88

SphereFace* [23] Large 76.65 92.32

UniformFace Large 79.98 95.36

ing to large intra-class variations.

4.3. Experiments on MegaFace

We evaluated the proposed UniformFace on FaceScrub

of MegaFace Challenge 1, including both face identifica-

tion and face verification tasks. We followed the protocol

of large training set as the training dataset contains more

than 0.5M images, where the identities appearing in Face-

Scrub were removed from the training set. We employed

the original test set of MegaFace for fair comparisons.

Comparison with the State-of-the-Arts: Table 1 shows

the experimental results on the MegaFace dataset compared

with the existing deep learning based methods. In the face

identification task, the similarity between the probe face and

each gallery face is computed, where 1M distractors exist in

the gallery set to make the task more challenging. We report

the Rank-1 identification accuracy in the table to meet the

practical demand. In the face verification task, we need to

decide whether a pair of faces are of the same identity. The

TAR is reported with 10−6 FAR.

We observe that the proposed UniformFace achieves

comparable results with the state-of-the-art deep learning

based methods. In Table 1, SphereFace* is to train the net-

work only with A-Softmax loss, fixing the same network

structure and training data for fair comparisons. We can

see that UniformFace outperforms SphereFace* as the class

centers are more equidistributed. Under the supervision of

uniform loss, the hypersphere manifold is completely ex-

ploited, and the minimum distance between class centers

Table 2. The comparison of the minimum average inter-class dis-

tances with or without the uniform loss.

Method Mean Variance Least 1,000

SphereFace* 1.13 0.10 0.45

UniformFace 1.45 0.06 0.55

Table 4. Comparison of Rank-1 accuracy (%) with more baselines

including SphereFace (SF), ArcFace (AF) and CosFace (CF).

SF Ours (SF) AF Ours (AF) CF Ours (CF)

76.65 79.98 79.14 81.46 81.59 83.53

can be maximized. The comparison shows the effectiveness

of the proposed uniform loss through the final recognition

rates on the MegaFace dataset. Fig. 4 shows the CMC and

ROC curves of different methods on the MegaFace dataset.

Evaluation of Uniformity: One of the most essential

property for UniformFace is the equidistributed class cen-

ters. In the previous experiments, we show that the utiliza-

tion of uniform loss Lu successfully boosts the face recog-

nition rate. However, a more direct evaluation is required

to show the improvement in feature distribution. In order to

better evaluate the uniformity of the learned representation,

we conducted an experiment for comparing the distribution

of class centers supervised with or without the uniform loss.

For each class center, we computed its nearest distance

to other class centers, which can be considered as the min-

imum average inter-class distance for the selected center.

The minimum average inter-class distance represented the

similarity of the selected class with the most dangerous

class. For the M minimum distances from all the M class-

es, we compared their means, variances and means of the

least 1,000 inter-class distances between SphereFace* and

UniformFace. Table 2 illustrates that uniform loss leads to

large and uniform minimum average inter-class distances as

the class centers are more equidistributed, where the mean

value increases by 28% (from 1.13 to 1.45) and the variance

decreases by 40% (from 0.10 to 0.06). Moreover, while

nonuniform distribution suffers from locality where some

classes gather in local spaces, our UniformFace relieves

such locality with large least 1,000 inter-class distances.

Adaptation to More Baselines: Recently, more and

more methods have been presented in the angular s-

pace and achieved outstanding performance, such as

SphereFace [23], ArcFace [7] and CosFace [41]. Techni-

cally, the proposed uniform loss can be generally applied

to these methods as it is designed based on angular space

instead of the specific SphereFace. Table 4 shows that the

proposed uniform loss successfully boosts the performance

of all the baselines, which presents its good generalization

ability.
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(a) CMC-distractors (b) CMC-rank (c) ROC-1M (d) ROC-10K

Figure 4. Comparison of (a) CMC curves with Rank-1 accuracy under varying numbers of distractors, (b) CMC curves with 1M distractors

under varying rank-K, (c) ROC curves with 1M distractors, and (d) ROC curves with 10K distractors.

Table 3. Verification TAR at 10−2 and 10
−3 FAR (%) and Rank-1 and Rank-5 identification accuracy (%) on the IJB-A dataset.

Method @FAR=10−2 @FAR=10−3 @Rank-1 @Rank-5

DCNN [5] 78.7± 4.3 - 85.2± 1.8 93.7± 1.0
DCNN (fusion) [5] 83.8± 4.2 - 90.3± 1.2 96.5± 0.8
Triplet Similarity [31] 79.0± 3.0 59.0± 5.0 88.0± 1.5 95.0± 0.7
PAM [26] 73.3± 1.8 55.2± 3.2 77.1± 1.6 88.7± 0.9
3DMM [38] 60.0± 5.6 - 76.2± 1.8 89.7± 1.0
LSFS [40] 72.9± 3.5 51.0± 6.1 82.2± 2.3 93.1± 1.4
DR-GAN [39] 77.4± 2.7 53.9± 4.3 85.5± 1.5 94.7± 1.1
PRN [16] 96.5± 0.4 91.9± 1.3 98.2± 0.4 99.2± 0.2

SphereFace* [23] 92.3± 1.6 88.4± 4.2 93.2± 1.3 96.5± 1.1
UniformFace 96.9± 0.8 92.3± 1.7 97.9± 0.5 98.8± 0.2

4.4. Experiments on IJBA

We evaluated our UniformFace on both verification and

identification tasks, where we reported the TAR at 10−2 and

10−3 FAR for the verification task, and Rank-1 and Rank-5

accuracy for the identification task. Table 3 shows the ex-

perimental results of UniformFace and existing methods on

the IJB-A dataset. In the compared methods, PAM [26],

3DMM [38] DR-GAN [39] and PRN [16] are recent pose-

aware face recognition methods, which effectively address

the extreme pose variance of the faces. However, Uniform-

Face achieves very competitive results compared with these

methods as a general face recognition method. While PAM,

3DMM, DR-GAN and PRN exploit strong prior informa-

tion of poses, UniformFace enhances the robustness by

encouraging equidistributed representation. As aforemen-

tioned, the minimum average inter-class distances are max-

imized with uniform distribution, which leads to stronger

robustness. Moreover, the uniform loss successfully boosts

the performance on the IJB-A dataset, which demonstrates

its effectiveness on faces with large pose variations.

4.5. Experiments on YTF and LFW

In this subsection, we evaluated our UniformFace on the

widely-used YTF and LFW datasets. For the YTF dataset,

Table 5. Verification rate (%) of UniformFace compared with the

state-of-the-art methods on the YTF and LFW datasets.

Method Data Model YTF LFW

DeepFace [37] 4M 3 91.4 97.4

FaceNet [32] 200M 1 95.1 99.7

VGG [30] 2.6M 1 97.3 99.0

DeepID2+ [35] 300K 1 - 98.7

DeepID2+ [35] 300K 25 93.2 99.5

Center Loss [42] 0.7M 1 94.9 99.3

Range Loss [45] 1.5M 1 93.7 99.5

Baidu [22] 1.3M 1 - 99.1

L-Softmax [24] 0.5M 1 - 98.7

SphereFace [23] 0.5M 1 95.0 99.4

Ring Loss [46] 3.5M 1 - 99.5

CosFace [41] 5M 1 97.6 99.7

PRN [16] 2.8M 1 95.8 99.7

SphereFace* [23] 6.1M 1 96.1 99.5

UniformFace 6.1M 1 97.7 99.8

we followed the protocol of unrestricted with labeled out-

side data, which contained 5,000 video pairs. For the LFW

dataset, we also followed the protocol of unrestricted with

labeled outside data, where we tested on 6,000 face pairs.
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Figure 5. Training curves of loss (La−s) and mean of minimum average inter-class distances on the YTF and LFW datasets.

Table 5 shows the experimental results of UniformFace

compared with the state-of-the-art methods on the YTF and

LFW datasets, which include DeepFace [37], FaceNet [32],

DeepID2+ [35], Range Loss [45], SphereFace [23], Ring

Loss [46], CosFace [41] and PRN [16]. From the table, we

observe that the usage of uniform loss boosts the perfor-

mance of 1.7% on YTF and 0.3% on LFW, which decreas-

es the error rates by 41% (from 3.9% to 2.3%) and 60%

(from 0.5% to 0.2%), respectively. The main reason is that

uniform loss leads to equidistributed representations, which

completely exploit the holistic feature space. While Deep-

Face and DeepID2+ employ multiple models and FaceNet

is trained with more than 200M data, UniformFace still out-

performs these methods on both YTF and LFW datasets,

which demonstrates the effectiveness of the proposed ap-

proach.

4.6. Ablation Study

In this subsection, we conducted ablation studies to fur-

ther demonstrate the effectiveness of UniformFace. Besides

quantitative experimental results on benchmark datasets, we

first designed apple-to-apple comparisons of training curves

and mean of minimum average inter-class distances to com-

pare A-Softmax (under varying m) and our UniformFace.

We initialized the network with AlexNet and an additional

fully connected layer to reduce dimension to 128, finetun-

ing with the same training data from YTF and LFW. Fig. 5

shows the curves of A-Softmax loss (La−s) and mean of

minimum average inter-class distances. Larger m encour-

ages larger inter-class angular margin, which leads to more

discriminativeness and difficulty in learning. However, it

does not explicitly reduce the variations of minimum av-

erage inter-class distances, while UniformFace has smaller

standard deviation (0.02 vs. 0.04 on YTF and 0.05 vs. 0.13

on LFW) as well as larger means for m = 4 in A-Softmax.

Then, we tested the effectiveness of the uniform loss

(Lu) in learning high-dimensional equidistributed represen-

tations. While it is relatively hard to theoretically guarantee

uniform distribution, we conducted an experiment to test

the uniformity on high-dimensional hypersphere. Given N

noise vectors z sampled from the standard normal distribu-

tion, we aim to learn a mapping f(z) to the hypersphere

space with a 4-layer fully connected network (ReLU for the

first three layers), supervised by uniform loss. We set the

dimension as 128 and N as 256 for easy design of a ground

truth uniform example [0, · · · ,±1, · · · , 0] (with only one

element as 1 or −1 and the others as 0). We compare the

mean and standard deviation of minimum distances, which

are
√
2 ± 0 for uniform distribution, 1.20 ± 0.02 for the

learned mapping, and 0.44±0.04 for random mapping. We

observe a similar uniform phenomenon with 2D and 3D cas-

es for high dimensions.

5. Conclusion

In this paper, we have proposed a uniform loss to learn

equidistributed representations for face recognition. Unlike

existing supervision signals which ignore the distribution

of classes and suffer from high locality, the proposed uni-

form loss considers the class centers as like charges with

intra-class repulsion, so that they will be spread uniformly

on the hypersphere manifold through potential energy min-

imization. Under the joint supervision of A-Softmax loss

and uniform loss, we maximize the minimum average inter-

class distances for all the classes with complete exploitation

of the holistic feature space. Extensive experimental results

on MegaFace, IJB-A, YTF and LFW demonstrate the effec-

tiveness of the proposed UniformFace. As we set the same

quantity of charge for each class center, the inter-class re-

pulsion is only relevant to the distances in this situation. It is

an interesting future work to learn data-dependent quantity

of charge for varying classes to obtain fine-grained distribu-

tion of representations.
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